1986B4.
a) 3 V
b) clockwise
c) 0.6 N
d) 1.8 W
1982B5.
a) 0.06 Webers
b) 0.06 V
c) -0.3 A from t = 0 to t = 2 seconds, 0 A from t = 2 to t = 4 seconds, and +0.15 A from t = 4 to t = 6 seconds.
3.
a) final speed is (2gy0)^(1/2)
b) I = Bh/R*(2gy0)^(1/2)
c) flux is increasing into the page, so induced current increases the flux out of the page. Current is CCW.
d) For flux:
Flux increases linearly to whB at w; Stays constant until 3w, and then decreases to zero at 4w.
For current: The magnitude of I is the value given in part (b).
Positive I from 0 to w, 0 from w to 3w, -I from 3w to 4w, and then zero from 4w to 5w.
4.
a) m = ILB/g = B^2L^2v/gR = 0.143 kg
b) 1.51 J
c) 1.51 J
5.
a) 0.3 Volts
b) 0.06 A, counter clockwise
c) 0.018 W
d) F = 0.036 N
e) 20 more turns means potential difference increases by a factor of 20. This also means twice the resistance of the wire. Since current I = deltaV/R, the factors of 20 will divide out, leaving the current the SAME.
Wednesday, March 5, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment